Your minimal example doesn’t compile, it’s also very big for what you are asking. See https://sscce.org/. And you don’t need the limits
call. You can open an issue for this, as I don’t see any native solution.
Here is a hack:
#show math.attach: it => {
let attachments = it.fields()
let base = attachments.remove("base")
if base != $=$.body { return it }
let top = attachments.remove("t")
if not attachments.values().all(x => x == none) { return it }
top = $script(top)$
base
context {
let width = measure(top).width
let space = measure(" ").width
// place(dx: -space * 2 - width / 2, dy: -1.15em, top)
place(dx: -space - width / 2, dy: -1.15em, top)
h(width / 2)
}
}
Full example
#set math.equation(numbering: "(1)")
#let dd = math.upright("d")
#let Re = $upright("Re")$
#show math.attach: it => {
let attachments = it.fields()
let base = attachments.remove("base")
if base != $=$.body { return it }
let top = attachments.remove("t")
if not attachments.values().all(x => x == none) { return it }
base
top = $script(top)$
context {
let width = measure(top).width
let w = measure(" ").width
// place(dx: -w * 2 - width / 2, dy: -1.15em, top)
place(dx: -w - width / 2, dy: -1.15em, top)
h(width / 2)
}
}
#[
#set math.equation(numbering: none)
$
integral_(RR^(1, d - 1)) frac(1, (l_E^2 + m^2)^A) frac(dd^d l_E, (2 pi)^d)
&= 1 / Gamma(A) integral_(RR^(1, d - 1)) integral_0^oo s^(A - 1) e^(-s(l_E^2 + m^2)) dd s thin frac(dd^d l_E, (2 pi)^d) \
&=^(Re(d) > 0) (2 pi^(d / 2)) / (Gamma(A) (2 pi)^d thin Gamma(d / 2)) Gamma(d / 2) / 2 integral_0^oo s^(A - 1) e^(-s m^2) s^(-d / 2) dd s \
$
]