» a — b means a is faster than b.
« The thicker the arrow, the greater the difference.

grid + no_curvly + outer_context

4

@text_cuwly + outer_context grid + no_curvly no_curvly + outer_context

Ay

grid + vendor_curvly Original

grid + trim_curvly outer_context

grid + no_context_curvly

#let text_top = "Niedersächsiche Landesrunde der 64. Mathematik-Olympiade"
#let text_bottom = "21./22. Februar 2025"
#let names = ("Test Firstname Lastname",) * 200

#import "@preview/curvly:0.1.0"
#import "@preview/cetz:0.4.2"

#set page(margin: 0mm)

#set text(
 font: "Liberation Serif",
)

#let inner = 34mm
#let middle = 42.8mm
#let outer = 56.7mm
#let stroke_var = (dash: "dashed", thickness: 0.2mm)

#let button() = {
 cetz.canvas(
 {
 import cetz.draw: *
 arc((0, 0), radius: middle, start: 30deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: middle, start: 120deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: middle, start: 210deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: middle, start: 300deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: outer, start: 30deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: outer, start: 120deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: outer, start: 210deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: outer, start: 300deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 circle((0, 0), radius: inner, stroke: stroke_var)
 rect((-middle, -middle), (middle, middle), stroke: stroke_var)
 //content((0,0), image("mologo-grey.pdf", width: middle))

 content((0, 0mm), {
 let l_top = measure([#text_top]).width
 let l_bottom = measure([#text_bottom]).width
 let both = l_top + l_bottom

 // curvly.text-on-circle(text_top,text_bottom, 50mm, l_top * 0.9 / both * 360deg, l_bottom * 0.9 / both * 360deg)
 })
 },
 padding: (-4mm, 0mm),
 debug: false,
)
}

#let background = {
 let b = context button()
 grid(
 columns: (1fr,) * 2,
 rows: (1fr,) * 3,
 align: center + horizon,
 ..(b,) * 6,
)
}

// Precompiled background, is fast and small file size
// #set page(background: image("test-14.pdf"))

// Slow and large pdf file
#set page(background: background)

#let buttons(names) = {
 names
 .chunks(6, exact: false)
 .map(
 names => grid(
 columns: (1fr,) * 2,
 rows: (1fr,) * 3,
 align: center + horizon,
 ..names.map(n => block(
 width: 0.95 * middle,
 inset: (top: 0.8em), // Compensate visual illusion
 {
 set text(size: 15pt, lang: "de", hyphenate: false, weight: "bold")
 n
 },
))
),
)
 .join(pagebreak())
}
#buttons(names)

#let text_top = "Niedersächsiche Landesrunde der 64. Mathematik-Olympiade"
#let text_bottom = "21./22. Februar 2025"
#let names = ("Test Firstname Lastname",) * 200

#import "@preview/curvly:0.1.0"
#import "@preview/cetz:0.4.2"

#set page(margin: 0mm)

#set text(
 font: "Liberation Serif",
)

#let inner = 34mm
#let middle = 42.8mm
#let outer = 56.7mm
#let stroke_var = (dash: "dashed", thickness: 0.2mm)

#let button() = {
 cetz.canvas(
 {
 import cetz.draw: *
 arc((0, 0), radius: middle, start: 30deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: middle, start: 120deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: middle, start: 210deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: middle, start: 300deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: outer, start: 30deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: outer, start: 120deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: outer, start: 210deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: outer, start: 300deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 circle((0, 0), radius: inner, stroke: stroke_var)
 rect((-middle, -middle), (middle, middle), stroke: stroke_var)
 //content((0,0), image("mologo-grey.pdf", width: middle))

 content((0, 0mm), context {
 let l_top = measure([#text_top]).width
 let l_bottom = measure([#text_bottom]).width
 let both = l_top + l_bottom

 // curvly.text-on-circle(text_top,text_bottom, 50mm, l_top * 0.9 / both * 360deg, l_bottom * 0.9 / both * 360deg)
 })
 },
 padding: (-4mm, 0mm),
 debug: false,
)
}

#let background = {
 let b = button()
 grid(
 columns: (1fr,) * 2,
 rows: (1fr,) * 3,
 align: center + horizon,
 ..(b,) * 6,
)
}

// Precompiled background, is fast and small file size
// #set page(background: image("test-14.pdf"))

// Slow and large pdf file
#set page(background: background)

#let buttons(names) = {
 names
 .chunks(6, exact: false)
 .map(
 names => grid(
 columns: (1fr,) * 2,
 rows: (1fr,) * 3,
 align: center + horizon,
 ..names.map(n => block(
 width: 0.95 * middle,
 inset: (top: 0.8em), // Compensate visual illusion
 {
 set text(size: 15pt, lang: "de", hyphenate: false, weight: "bold")
 n
 },
))
),
)
 .join(pagebreak())
}
#buttons(names)

#let text_top = "Niedersächsiche Landesrunde der 64. Mathematik-Olympiade"
#let text_bottom = "21./22. Februar 2025"
#let names = ("Test Firstname Lastname",) * 200

#import "@preview/curvly:0.1.0"
#import "@preview/cetz:0.4.2"

#set page(margin: 0mm)

#set text(
 font: "Liberation Serif",
)

#let inner = 34mm
#let middle = 42.8mm
#let outer = 56.7mm
#let stroke_var = (dash: "dashed", thickness: 0.2mm)

#let button() = {
 cetz.canvas(
 {
 import cetz.draw: *
 arc((0, 0), radius: middle, start: 30deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: middle, start: 120deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: middle, start: 210deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: middle, start: 300deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: outer, start: 30deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: outer, start: 120deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: outer, start: 210deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: outer, start: 300deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 circle((0, 0), radius: inner, stroke: stroke_var)
 rect((-middle, -middle), (middle, middle), stroke: stroke_var)
 //content((0,0), image("mologo-grey.pdf", width: middle))

 content((0, 0mm), {
 let l_top = measure([#text_top]).width
 let l_bottom = measure([#text_bottom]).width
 let both = l_top + l_bottom

 // curvly.text-on-circle(text_top,text_bottom, 50mm, l_top * 0.9 / both * 360deg, l_bottom * 0.9 / both * 360deg)
 })
 },
 padding: (-4mm, 0mm),
 debug: false,
)
}

#let button_name(name) = {
 cetz.canvas(
 {
 import cetz.draw: *
 hide(arc((0, 0), radius: outer, start: 30deg, delta: 30deg, stroke: stroke_var, anchor: "origin"), bounds: true)
 hide(arc((0, 0), radius: outer, start: 120deg, delta: 30deg, stroke: stroke_var, anchor: "origin"), bounds: true)
 hide(arc((0, 0), radius: outer, start: 210deg, delta: 30deg, stroke: stroke_var, anchor: "origin"), bounds: true)
 hide(arc((0, 0), radius: outer, start: 300deg, delta: 30deg, stroke: stroke_var, anchor: "origin"), bounds: true)

 content((0, 0), {
 set align(center + horizon)
 block(width: 0.95 * middle, text(name, size: 15pt, lang: "de", hyphenate: false, weight: "bold"))
 })
 },
 padding: (-4mm, 0mm),
 debug: false,
)
}

#let background = context [
 #columns(2)[
 #button()
 #button()
 #button()
 #colbreak()
 #button()
 #button()
 #button()
]
]

// Precompiled background, is fast and small file size
// #set page(background: image("test-14.pdf"))

// Slow and large pdf file
#set page(background: background)

#let buttons(names) = {
 let len = names.len()

 names
 .chunks(6, exact: false)
 .map(
 names => place(dx: 1.4mm, dy: 8mm)[#columns(2)[
 #button_name(names.at(0, default: ""))
 #button_name(names.at(2, default: ""))
 #button_name(names.at(4, default: ""))
 #colbreak()
 #button_name(names.at(1, default: ""))
 #button_name(names.at(3, default: ""))
 #button_name(names.at(5, default: ""))
]],
)
 .join(pagebreak())
}
#buttons(names)

#let text_top = "Niedersächsiche Landesrunde der 64. Mathematik-Olympiade"
#let text_bottom = "21./22. Februar 2025"
#let names = ("Test Firstname Lastname",) * 200

#import "@preview/curvly:0.1.0"
#import "@preview/cetz:0.4.2"

#set page(margin: 0mm)

#set text(
 font: "Liberation Serif",
)

#let inner = 34mm
#let middle = 42.8mm
#let outer = 56.7mm
#let stroke_var = (dash: "dashed", thickness: 0.2mm)

#let button() = {
 cetz.canvas(
 {
 import cetz.draw: *
 arc((0, 0), radius: middle, start: 30deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: middle, start: 120deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: middle, start: 210deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: middle, start: 300deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: outer, start: 30deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: outer, start: 120deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: outer, start: 210deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: outer, start: 300deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 circle((0, 0), radius: inner, stroke: stroke_var)
 rect((-middle, -middle), (middle, middle), stroke: stroke_var)
 //content((0,0), image("mologo-grey.pdf", width: middle))

 content((0, 0mm), context {
 let l_top = measure([#text_top]).width
 let l_bottom = measure([#text_bottom]).width
 let both = l_top + l_bottom

 // curvly.text-on-circle(text_top,text_bottom, 50mm, l_top * 0.9 / both * 360deg, l_bottom * 0.9 / both * 360deg)
 })
 },
 padding: (-4mm, 0mm),
 debug: false,
)
}

#let button_name(name) = {
 cetz.canvas(
 {
 import cetz.draw: *
 hide(arc((0, 0), radius: outer, start: 30deg, delta: 30deg, stroke: stroke_var, anchor: "origin"), bounds: true)
 hide(arc((0, 0), radius: outer, start: 120deg, delta: 30deg, stroke: stroke_var, anchor: "origin"), bounds: true)
 hide(arc((0, 0), radius: outer, start: 210deg, delta: 30deg, stroke: stroke_var, anchor: "origin"), bounds: true)
 hide(arc((0, 0), radius: outer, start: 300deg, delta: 30deg, stroke: stroke_var, anchor: "origin"), bounds: true)

 content((0, 0), context {
 set align(center + horizon)
 block(width: 0.95 * middle, text(name, size: 15pt, lang: "de", hyphenate: false, weight: "bold"))
 })
 },
 padding: (-4mm, 0mm),
 debug: false,
)
}

#let background = [
 #columns(2)[
 #button()
 #button()
 #button()
 #colbreak()
 #button()
 #button()
 #button()
]
]

// Precompiled background, is fast and small file size
// #set page(background: image("test-14.pdf"))

// Slow and large pdf file
#set page(background: background)

#let buttons(names) = {
 let len = names.len()

 names
 .chunks(6, exact: false)
 .map(
 names => place(dx: 1.4mm, dy: 8mm)[#columns(2)[
 #button_name(names.at(0, default: ""))
 #button_name(names.at(2, default: ""))
 #button_name(names.at(4, default: ""))
 #colbreak()
 #button_name(names.at(1, default: ""))
 #button_name(names.at(3, default: ""))
 #button_name(names.at(5, default: ""))
]],
)
 .join(pagebreak())
}
#buttons(names)

#let text_top = "Niedersächsiche Landesrunde der 64. Mathematik-Olympiade"
#let text_bottom = "21./22. Februar 2025"
#let names = ("Test Firstname Lastname",) * 200

#import "curvly-no_context.typ": text-on-circle
#import "@preview/cetz:0.4.2"

#set page(margin: 0mm)

#set text(
 font: "Liberation Serif",
)

#let inner = 34mm
#let middle = 42.8mm
#let outer = 56.7mm
#let stroke_var = (dash: "dashed", thickness: 0.2mm)

#let button() = {
 cetz.canvas(
 {
 import cetz.draw: *
 arc((0, 0), radius: middle, start: 30deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: middle, start: 120deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: middle, start: 210deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: middle, start: 300deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: outer, start: 30deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: outer, start: 120deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: outer, start: 210deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: outer, start: 300deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 circle((0, 0), radius: inner, stroke: stroke_var)
 rect((-middle, -middle), (middle, middle), stroke: stroke_var)
 //content((0,0), image("mologo-grey.pdf", width: middle))

 content((0, 0mm), {
 let l_top = measure([#text_top]).width
 let l_bottom = measure([#text_bottom]).width
 let both = l_top + l_bottom

 text-on-circle(text_top, text_bottom, 50mm, l_top * 0.9 / both * 360deg, l_bottom * 0.9 / both * 360deg)
 })
 },
 padding: (-4mm, 0mm),
 debug: false,
)
}

#let background = {
 let b = context button()
 grid(
 columns: (1fr,) * 2,
 rows: (1fr,) * 3,
 align: center + horizon,
 ..(b,) * 6,
)
}

// Precompiled background, is fast and small file size
// #set page(background: image("test-14.pdf"))

// Slow and large pdf file
#set page(background: background)

#let buttons(names) = {
 names
 .chunks(6, exact: false)
 .map(
 names => grid(
 columns: (1fr,) * 2,
 rows: (1fr,) * 3,
 align: center + horizon,
 ..names.map(n => block(
 width: 0.95 * middle,
 inset: (top: 0.8em), // Compensate visual illusion
 {
 set text(size: 15pt, lang: "de", hyphenate: false, weight: "bold")
 n
 },
))
),
)
 .join(pagebreak())
}
#buttons(names)

#let text_top = "Niedersächsiche Landesrunde der 64. Mathematik-Olympiade"
#let text_bottom = "21./22. Februar 2025"
#let names = ("Test Firstname Lastname",) * 200

#import "@preview/curvly:0.1.0"
#import "@preview/cetz:0.4.2"

#set page(margin: 0mm)

#set text(
 font: "Liberation Serif",
)

#let inner = 34mm
#let middle = 42.8mm
#let outer = 56.7mm
#let stroke_var = (dash: "dashed", thickness: 0.2mm)

#let button() = {
 cetz.canvas(
 {
 import cetz.draw: *
 arc((0, 0), radius: middle, start: 30deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: middle, start: 120deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: middle, start: 210deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: middle, start: 300deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: outer, start: 30deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: outer, start: 120deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: outer, start: 210deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: outer, start: 300deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 circle((0, 0), radius: inner, stroke: stroke_var)
 rect((-middle, -middle), (middle, middle), stroke: stroke_var)
 //content((0,0), image("mologo-grey.pdf", width: middle))

 content((0, 0mm), context {
 let l_top = measure([#text_top]).width
 let l_bottom = measure([#text_bottom]).width
 let both = l_top + l_bottom

 curvly.text-on-circle(text_top, text_bottom, 50mm, l_top * 0.9 / both * 360deg, l_bottom * 0.9 / both * 360deg)
 })
 },
 padding: (-4mm, 0mm),
 debug: false,
)
}

#let background = {
 let b = button()
 grid(
 columns: (1fr,) * 2,
 rows: (1fr,) * 3,
 align: center + horizon,
 ..(b,) * 6,
)
}

// Precompiled background, is fast and small file size
// #set page(background: image("test-14.pdf"))

// Slow and large pdf file
#set page(background: background)

#let buttons(names) = {
 names
 .chunks(6, exact: false)
 .map(
 names => grid(
 columns: (1fr,) * 2,
 rows: (1fr,) * 3,
 align: center + horizon,
 ..names.map(n => block(
 width: 0.95 * middle,
 inset: (top: 0.8em), // Compensate visual illusion
 {
 set text(size: 15pt, lang: "de", hyphenate: false, weight: "bold")
 n
 },
))
),
)
 .join(pagebreak())
}
#buttons(names)

#let text_top = "Niedersächsiche Landesrunde der 64. Mathematik-Olympiade"
#let text_bottom = "21./22. Februar 2025"
#let names = ("Test Firstname Lastname",) * 200

#import "curvly-0.1.0.typ": text-on-circle
#import "@preview/cetz:0.4.2"

#set page(margin: 0mm)

#set text(
 font: "Liberation Serif",
)

#let inner = 34mm
#let middle = 42.8mm
#let outer = 56.7mm
#let stroke_var = (dash: "dashed", thickness: 0.2mm)

#let button() = {
 cetz.canvas(
 {
 import cetz.draw: *
 arc((0, 0), radius: middle, start: 30deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: middle, start: 120deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: middle, start: 210deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: middle, start: 300deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: outer, start: 30deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: outer, start: 120deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: outer, start: 210deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: outer, start: 300deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 circle((0, 0), radius: inner, stroke: stroke_var)
 rect((-middle, -middle), (middle, middle), stroke: stroke_var)
 //content((0,0), image("mologo-grey.pdf", width: middle))

 content((0, 0mm), context {
 let l_top = measure([#text_top]).width
 let l_bottom = measure([#text_bottom]).width
 let both = l_top + l_bottom

 text-on-circle(text_top, text_bottom, 50mm, l_top * 0.9 / both * 360deg, l_bottom * 0.9 / both * 360deg)
 })
 },
 padding: (-4mm, 0mm),
 debug: false,
)
}

#let background = {
 let b = button()
 grid(
 columns: (1fr,) * 2,
 rows: (1fr,) * 3,
 align: center + horizon,
 ..(b,) * 6,
)
}

// Precompiled background, is fast and small file size
// #set page(background: image("test-14.pdf"))

// Slow and large pdf file
#set page(background: background)

#let buttons(names) = {
 names
 .chunks(6, exact: false)
 .map(
 names => grid(
 columns: (1fr,) * 2,
 rows: (1fr,) * 3,
 align: center + horizon,
 ..names.map(n => block(
 width: 0.95 * middle,
 inset: (top: 0.8em), // Compensate visual illusion
 {
 set text(size: 15pt, lang: "de", hyphenate: false, weight: "bold")
 n
 },
))
),
)
 .join(pagebreak())
}
#buttons(names)

#let text_top = "Niedersächsiche Landesrunde der 64. Mathematik-Olympiade"
#let text_bottom = "21./22. Februar 2025"
#let names = ("Test Firstname Lastname",) * 200

#import "@preview/curvly:0.1.0"
#import "@preview/cetz:0.4.2"

#set page(margin: 0mm)

#set text(
 font: "Liberation Serif",
)

#let inner = 34mm
#let middle = 42.8mm
#let outer = 56.7mm
#let stroke_var = (dash: "dashed", thickness: 0.2mm)

#let button() = {
 cetz.canvas(
 {
 import cetz.draw: *
 arc((0, 0), radius: middle, start: 30deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: middle, start: 120deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: middle, start: 210deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: middle, start: 300deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: outer, start: 30deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: outer, start: 120deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: outer, start: 210deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: outer, start: 300deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 circle((0, 0), radius: inner, stroke: stroke_var)
 rect((-middle, -middle), (middle, middle), stroke: stroke_var)
 //content((0,0), image("mologo-grey.pdf", width: middle))

 content((0, 0mm), context {
 let l_top = measure([#text_top]).width
 let l_bottom = measure([#text_bottom]).width
 let both = l_top + l_bottom

 curvly.text-on-circle(text_top, text_bottom, 50mm, l_top * 0.9 / both * 360deg, l_bottom * 0.9 / both * 360deg)
 })
 },
 padding: (-4mm, 0mm),
 debug: false,
)
}

#let button_name(name) = {
 cetz.canvas(
 {
 import cetz.draw: *
 hide(arc((0, 0), radius: outer, start: 30deg, delta: 30deg, stroke: stroke_var, anchor: "origin"), bounds: true)
 hide(arc((0, 0), radius: outer, start: 120deg, delta: 30deg, stroke: stroke_var, anchor: "origin"), bounds: true)
 hide(arc((0, 0), radius: outer, start: 210deg, delta: 30deg, stroke: stroke_var, anchor: "origin"), bounds: true)
 hide(arc((0, 0), radius: outer, start: 300deg, delta: 30deg, stroke: stroke_var, anchor: "origin"), bounds: true)

 content((0, 0), context {
 set align(center + horizon)
 block(width: 0.95 * middle, text(name, size: 15pt, lang: "de", hyphenate: false, weight: "bold"))
 })
 },
 padding: (-4mm, 0mm),
 debug: false,
)
}

#let background = [
 #columns(2)[
 #button()
 #button()
 #button()
 #colbreak()
 #button()
 #button()
 #button()
]
]

// Precompiled background, is fast and small file size
// #set page(background: image("test-14.pdf"))

// Slow and large pdf file
#set page(background: background)

#let buttons(names) = {
 let len = names.len()

 names
 .chunks(6, exact: false)
 .map(
 names => place(dx: 1.4mm, dy: 8mm)[#columns(2)[
 #button_name(names.at(0, default: ""))
 #button_name(names.at(2, default: ""))
 #button_name(names.at(4, default: ""))
 #colbreak()
 #button_name(names.at(1, default: ""))
 #button_name(names.at(3, default: ""))
 #button_name(names.at(5, default: ""))
]],
)
 .join(pagebreak())
}
#buttons(names)

#let text_top = "Niedersächsiche Landesrunde der 64. Mathematik-Olympiade"
#let text_bottom = "21./22. Februar 2025"
#let names = ("Test Firstname Lastname",) * 200

#import "@preview/curvly:0.1.0"
#import "@preview/cetz:0.4.2"

#set page(margin: 0mm)

#set text(
 font: "Liberation Serif",
)

#let inner = 34mm
#let middle = 42.8mm
#let outer = 56.7mm
#let stroke_var = (dash: "dashed", thickness: 0.2mm)

#let button() = {
 cetz.canvas(
 {
 import cetz.draw: *
 arc((0, 0), radius: middle, start: 30deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: middle, start: 120deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: middle, start: 210deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: middle, start: 300deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: outer, start: 30deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: outer, start: 120deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: outer, start: 210deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: outer, start: 300deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 circle((0, 0), radius: inner, stroke: stroke_var)
 rect((-middle, -middle), (middle, middle), stroke: stroke_var)
 //content((0,0), image("mologo-grey.pdf", width: middle))

 content((0, 0mm), {
 let l_top = measure([#text_top]).width
 let l_bottom = measure([#text_bottom]).width
 let both = l_top + l_bottom

 curvly.text-on-circle(text_top, text_bottom, 50mm, l_top * 0.9 / both * 360deg, l_bottom * 0.9 / both * 360deg)
 })
 },
 padding: (-4mm, 0mm),
 debug: false,
)
}

#let button_name(name) = {
 cetz.canvas(
 {
 import cetz.draw: *
 hide(arc((0, 0), radius: outer, start: 30deg, delta: 30deg, stroke: stroke_var, anchor: "origin"), bounds: true)
 hide(arc((0, 0), radius: outer, start: 120deg, delta: 30deg, stroke: stroke_var, anchor: "origin"), bounds: true)
 hide(arc((0, 0), radius: outer, start: 210deg, delta: 30deg, stroke: stroke_var, anchor: "origin"), bounds: true)
 hide(arc((0, 0), radius: outer, start: 300deg, delta: 30deg, stroke: stroke_var, anchor: "origin"), bounds: true)

 content((0, 0), {
 set align(center + horizon)
 block(width: 0.95 * middle, text(name, size: 15pt, lang: "de", hyphenate: false, weight: "bold"))
 })
 },
 padding: (-4mm, 0mm),
 debug: false,
)
}

#let background = context [
 #columns(2)[
 #button()
 #button()
 #button()
 #colbreak()
 #button()
 #button()
 #button()
]
]

// Precompiled background, is fast and small file size
// #set page(background: image("test-14.pdf"))

// Slow and large pdf file
#set page(background: background)

#let buttons(names) = {
 let len = names.len()

 names
 .chunks(6, exact: false)
 .map(
 names => place(dx: 1.4mm, dy: 8mm)[#columns(2)[
 #button_name(names.at(0, default: ""))
 #button_name(names.at(2, default: ""))
 #button_name(names.at(4, default: ""))
 #colbreak()
 #button_name(names.at(1, default: ""))
 #button_name(names.at(3, default: ""))
 #button_name(names.at(5, default: ""))
]],
)
 .join(pagebreak())
}
#buttons(names)

#let text_top = "Niedersächsiche Landesrunde der 64. Mathematik-Olympiade"
#let text_bottom = "21./22. Februar 2025"
#let names = ("Test Firstname Lastname",) * 200

#import "curvly-trim.typ": text-on-circle
#import "@preview/cetz:0.4.2"

#set page(margin: 0mm)

#set text(
 font: "Liberation Serif",
)

#let inner = 34mm
#let middle = 42.8mm
#let outer = 56.7mm
#let stroke_var = (dash: "dashed", thickness: 0.2mm)

#let button() = {
 cetz.canvas(
 {
 import cetz.draw: *
 arc((0, 0), radius: middle, start: 30deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: middle, start: 120deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: middle, start: 210deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: middle, start: 300deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: outer, start: 30deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: outer, start: 120deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: outer, start: 210deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: outer, start: 300deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 circle((0, 0), radius: inner, stroke: stroke_var)
 rect((-middle, -middle), (middle, middle), stroke: stroke_var)
 //content((0,0), image("mologo-grey.pdf", width: middle))

 content((0, 0mm), context {
 let l_top = measure([#text_top]).width
 let l_bottom = measure([#text_bottom]).width
 let both = l_top + l_bottom

 text-on-circle(text_top, text_bottom, 50mm, l_top * 0.9 / both * 360deg, l_bottom * 0.9 / both * 360deg)
 })
 },
 padding: (-4mm, 0mm),
 debug: false,
)
}

#let background = {
 let b = button()
 grid(
 columns: (1fr,) * 2,
 rows: (1fr,) * 3,
 align: center + horizon,
 ..(b,) * 6,
)
}

// Precompiled background, is fast and small file size
// #set page(background: image("test-14.pdf"))

// Slow and large pdf file
#set page(background: background)

#let buttons(names) = {
 names
 .chunks(6, exact: false)
 .map(
 names => grid(
 columns: (1fr,) * 2,
 rows: (1fr,) * 3,
 align: center + horizon,
 ..names.map(n => block(
 width: 0.95 * middle,
 inset: (top: 0.8em), // Compensate visual illusion
 {
 set text(size: 15pt, lang: "de", hyphenate: false, weight: "bold")
 n
 },
))
),
)
 .join(pagebreak())
}
#buttons(names)

#let text_top = "Niedersächsiche Landesrunde der 64. Mathematik-Olympiade"
#let text_bottom = "21./22. Februar 2025"
#let names = ("Test Firstname Lastname",) * 200

#import "curvly-no_context.typ": text-on-circle
#import "@preview/cetz:0.4.2"

#set page(margin: 0mm)

#set text(
 font: "Liberation Serif",
)

#let inner = 34mm
#let middle = 42.8mm
#let outer = 56.7mm
#let stroke_var = (dash: "dashed", thickness: 0.2mm)

#let button() = {
 cetz.canvas(
 {
 import cetz.draw: *
 arc((0, 0), radius: middle, start: 30deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: middle, start: 120deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: middle, start: 210deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: middle, start: 300deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: outer, start: 30deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: outer, start: 120deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: outer, start: 210deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 arc((0, 0), radius: outer, start: 300deg, delta: 30deg, stroke: stroke_var, anchor: "origin")
 circle((0, 0), radius: inner, stroke: stroke_var)
 rect((-middle, -middle), (middle, middle), stroke: stroke_var)
 //content((0,0), image("mologo-grey.pdf", width: middle))

 content((0, 0mm), context {
 let l_top = measure([#text_top]).width
 let l_bottom = measure([#text_bottom]).width
 let both = l_top + l_bottom

 text-on-circle(text_top, text_bottom, 50mm, l_top * 0.9 / both * 360deg, l_bottom * 0.9 / both * 360deg)
 })
 },
 padding: (-4mm, 0mm),
 debug: false,
)
}

#let background = {
 let b = button()
 grid(
 columns: (1fr,) * 2,
 rows: (1fr,) * 3,
 align: center + horizon,
 ..(b,) * 6,
)
}

// Precompiled background, is fast and small file size
// #set page(background: image("test-14.pdf"))

// Slow and large pdf file
#set page(background: background)

#let buttons(names) = {
 names
 .chunks(6, exact: false)
 .map(
 names => grid(
 columns: (1fr,) * 2,
 rows: (1fr,) * 3,
 align: center + horizon,
 ..names.map(n => block(
 width: 0.95 * middle,
 inset: (top: 0.8em), // Compensate visual illusion
 {
 set text(size: 15pt, lang: "de", hyphenate: false, weight: "bold")
 n
 },
))
),
)
 .join(pagebreak())
}
#buttons(names)

// Distribute letters equally
#let get-percents(length) = {
 if length == 0 {
 return ()
 }
 if length == 1 {
 return (.5,) // If only one character, place in the middle
 }
 let indices = range(length)
 return indices.map(i => i / (length - 1))
}

// Calculate placement percents based on character widths
#let get-percents-char-width(chars, radius, degrees) = {
 if chars.len() == 0 {
 return ()
 }

 if chars.len() == 1 {
 return (.5,) // If only one character, place in the middle
 }
 let widths = chars.map(c => measure(c).width)
 // let widths = chars.map(c => 0pt)
 let half-widths = widths.map(w => w / 2)
 let half-angles = half-widths.map(hw => calc.atan2(radius.to-absolute().pt(), hw.pt()))

 let remaining-angle = degrees
 for i in range(half-angles.len()) {
 if i == 0 {
 remaining-angle -= half-angles.at(i) // only sub half of the first char
 } else if i == half-angles.len() - 1 {
 remaining-angle -= half-angles.at(i) // only sub half of the last char
 } else {
 remaining-angle -= half-angles.at(i) * 2
 }
 }

 let inter-char-angle = remaining-angle / (chars.len() - 1)

 let cur-angle-offset = 0deg
 let angle-offsets = (cur-angle-offset,) // Comma makes a list
 for i in range(1, chars.len()) {
 cur-angle-offset += half-angles.at(i - 1) + inter-char-angle + half-angles.at(i)
 angle-offsets.push(cur-angle-offset)
 }

 // percent is float from [0, 1]. Will be used for text rotation too
 return angle-offsets.map(ao => ao / degrees)
}

// Positions text on the top portion of a circle. Height increases as required
// given font and degrees.
//
// Arguments:
// str: string to display
// width: Total width of the containing block
// degrees: Range of the top of the circle to place text
// rotate-letters: rotate letters to match tangent of the circle
// equidistant: Separate characters evenly rather than account for char widths
// show-design-aids: Shows design aids when true
// font-letter-spacing: Manual adjustment for letter spacing built into font
#let text-on-arc(
 str,
 width,
 degrees,
 rotate-letters: true,
 equidistant: false,
 show-design-aids: false,
 font-letter-spacing: 0pt,
) = context {
 if degrees == 0 {
 panic("degrees must be greater than 0 otherwise circle would be infinitely large")
 }

 // Orient angles where 0deg is left Cartesian coordinate system
 let start-angle = 90deg - degrees / 2
 let end-angle = 90deg + degrees / 2

 // Orient angles where 0deg is up for text rotation
 let text-start-angle = -degrees / 2
 let text-end-angle = degrees / 2

 let m = measure[M] // pic a good letter
 let (letter-width, cap-height) = (m.width - font-letter-spacing, m.height)

 // Adjust y for letter rotation causing part of the letter to drop below bottom of the rect
 let y-char-offset = letter-width / 2 * calc.sin(text-end-angle)

 // Calculate block inset for text height or width depending on how the
 // first/last letter is rotated
 let text-offset-x-height = cap-height * calc.cos(90deg + text-start-angle)
 let text-offset-x-width = (letter-width / 2) * calc.cos(text-start-angle)
 let text-offset-x = text-offset-x-height + text-offset-x-width

 // Distance between bottom+center of first character and last character
 let arch-width = width - text-offset-x * 2 // Times 2 for left and right impact

 // Calculate radius of the circle on which we will place text
 let radius = arch-width / (2 * calc.sin(degrees / 2))

 // Distance between baseline of first character and middle character
 let bend-height = radius - radius * calc.cos(degrees / 2)

 // Shift text/circle down so that the bounding block is
 // only as high as it needs to be for the degrees specified
 let y-offset = radius * calc.sin(end-angle)

 let block-fill = none
 if show-design-aids {
 block-fill = red
 }
 let containing-block-height = y-char-offset + cap-height + bend-height

 // The container for the text
 block(fill: block-fill, width: width, height: containing-block-height, {
 if show-design-aids {
 // Center line
 place(
 top + left,
 line(start: (50%, 0pt), end: (50%, 100%), stroke: .3pt),
)

 // Calculated circle based on width and degrees
 place(
 top + left,
 dx: -radius + width / 2,
 dy: cap-height,
 circle(stroke: .1pt, radius: radius),
)
 }

 // Convert string to array of chars (Support unicode characters)
 // ...otherwise str.at returns UTF-8 bytes
 let chars = str.matches(regex(".")).map(m => m.text)

 let percents = get-percents(chars.len())
 if not equidistant {
 percents = get-percents-char-width(chars, radius, degrees)
 }

 let n = chars.len()
 for i in range(n) {
 let percent = percents.at(i)

 let pos-angle = percent * degrees + (start-angle)
 let text-angle = percent * degrees + (text-start-angle)

 let x = -radius * calc.cos(pos-angle)
 let y = -radius * calc.sin(pos-angle)

 let cur = measure(chars.at(i))
 place(
 bottom,
 dx: x + 50% - (cur.width / 2),
 dy: y + y-offset - y-char-offset,
 if rotate-letters {
 rotate(text-angle, origin: bottom, chars.at(i))
 } else {
 chars.at(i)
 },
)

 if show-design-aids {
 let alignment-circle-radius = .023em
 place(
 bottom,
 dx: x + 50% - alignment-circle-radius,
 dy: y + y-offset - y-char-offset + alignment-circle-radius,
 circle(radius: alignment-circle-radius, stroke: none, fill: black),
)
 }
 }
 })
}

// Positions text on the top portion of a circle. Height increases as required
// given font and degrees.
//
// Arguments:
// top-str: string to display on the top of the circle
// bottom-str: string to display on the bottom of the circle
// width: Total width of the containing block
// top-degrees: Range of the top of the circle to place text
// bottom-degrees: Range of the top of the circle to place text
// equidistant: Separate characters evenly rather than account for char widths
// show-design-aids: Shows design aids when true
#let text-on-circle(
 top-str,
 bottom-str,
 width,
 top-degrees,
 bottom-degrees,
 circle-background: black,
 circle-fill: none,
 circle-margin: 0pt,
 equidistant: false,
 show-design-aids: false,
) = context {
 let m = measure[M] // pic a good letter
 let (letter-width, cap-height) = (m.width, m.height)

 // Calculate radius of the circle on which we will place text
 let radius = (width - 2 * cap-height - 2 * circle-margin) / 2

 let block-fill = none
 if show-design-aids {
 block-fill = red
 }
 let containing-block-height = 2 * (radius + circle-margin + cap-height)
 let containing-block-width = width
 let containing-block-width = 2 * (radius + circle-margin + cap-height)

 // The container for the text
 block(fill: block-fill, width: containing-block-width, height: containing-block-height, {
 if circle-fill != none {
 place(
 top + left,
 dx: 0pt,
 circle(fill: circle-fill, stroke: none, radius: radius + circle-margin + cap-height),
)

 place(
 top + left,
 dx: 2 * circle-margin + cap-height,
 dy: 2 * circle-margin + cap-height,
 circle(fill: white, stroke: none, radius: radius - circle-margin),
)
 }

 // Convert string to array of chars (Support unicode characters)
 // ...otherwise str.at returns UTF-8 bytes
 let top-chars = top-str.matches(regex(".")).map(m => m.text)

 let percents = get-percents(top-chars.len())
 if not equidistant {
 percents = get-percents-char-width(top-chars, radius, top-degrees)
 }

 // Place Top Text
 let n = top-chars.len()
 for i in range(n) {
 let percent = percents.at(i)

 // Orient angles where 0deg is left Cartesian coordinate system
 let start-angle = 90deg - top-degrees / 2

 // Orient angles where 0deg is up for text rotation
 let text-start-angle = -top-degrees / 2

 let pos-angle = percent * top-degrees + start-angle
 let text-angle = percent * top-degrees + text-start-angle

 pos-angle = percent * top-degrees + start-angle

 let x = -radius * calc.cos(pos-angle)
 let y = -radius * calc.sin(pos-angle)

 let cur = measure(top-chars.at(i))
 place(
 top,
 dx: x + 50% - (cur.width / 2),
 dy: y + radius + circle-margin,
 rotate(text-angle, origin: bottom, top-chars.at(i)),
)

 if show-design-aids {
 let alignment-circle-radius = .023em
 place(
 top,
 dx: x + 50% - alignment-circle-radius,
 dy: circle-margin + y + radius + cap-height - alignment-circle-radius,
 circle(radius: alignment-circle-radius, stroke: none, fill: black),
)
 }
 }

 // Convert string to array of chars (Support unicode characters)
 // ...otherwise str.at returns UTF-8 bytes
 let bottom-chars = bottom-str.matches(regex(".")).map(m => m.text)

 let percents = get-percents(bottom-chars.len())
 if not equidistant {
 percents = get-percents-char-width(bottom-chars, radius, bottom-degrees)
 }

 // Place Bottom Text
 let n = bottom-chars.len()
 for i in range(n) {
 let percent = percents.at(i)

 // Orient angles where 0deg is left Cartesian coordinate system
 let start-angle = 270deg + bottom-degrees / 2

 // Orient angles where 0deg is up for text rotation
 let text-start-angle = bottom-degrees / 2

 let pos-angle = -percent * bottom-degrees + (start-angle)
 let text-angle = -percent * bottom-degrees + (text-start-angle)

 let x = -(radius + cap-height) * calc.cos(pos-angle)
 let y = -(radius + cap-height) * calc.sin(pos-angle)

 let cur = measure(bottom-chars.at(i))
 place(
 top,
 dx: x + 50% - (cur.width / 2),
 dy: y + radius + circle-margin,
 rotate(text-angle, origin: bottom, bottom-chars.at(i)),
)

 if show-design-aids {
 let alignment-circle-radius = .023em
 place(
 top,
 dx: x + 50% - alignment-circle-radius,
 dy: circle-margin + y + radius + cap-height - alignment-circle-radius,
 circle(radius: alignment-circle-radius, stroke: none, fill: black),
)
 }
 }

 if show-design-aids {
 // Center line
 place(
 top + left,
 line(start: (50%, 0pt), end: (50%, 100%), stroke: .3pt),
)

 // Calculated circle based on width and degrees for top text
 place(
 top + left,
 dx: -radius + containing-block-width / 2,
 dy: circle-margin + cap-height,
 circle(stroke: .1pt, radius: radius),
)

 // Calculated circle based on width and degrees for bottom text
 place(
 top + left,
 dx: -(radius + cap-height) + containing-block-width / 2,
 dy: circle-margin,
 circle(stroke: .1pt, radius: (radius + cap-height)),
)
 }
 })
}

// Distribute letters equally
#let get-percents(length) = {
 if length == 0 {
 return ()
 }
 if length == 1 {
 return (.5,) // If only one character, place in the middle
 }
 let indices = range(length)
 return indices.map(i => i / (length - 1))
}

// Calculate placement percents based on character widths
#let get-percents-char-width(chars, radius, degrees) = {
 if chars.len() == 0 {
 return ()
 }

 if chars.len() == 1 {
 return (.5,) // If only one character, place in the middle
 }
 let widths = chars.map(c => measure(c).width)
 // let widths = chars.map(c => 0pt)
 let half-widths = widths.map(w => w / 2)
 let half-angles = half-widths.map(hw => calc.atan2(radius.to-absolute().pt(), hw.pt()))

 let remaining-angle = degrees
 for i in range(half-angles.len()) {
 if i == 0 {
 remaining-angle -= half-angles.at(i) // only sub half of the first char
 } else if i == half-angles.len() - 1 {
 remaining-angle -= half-angles.at(i) // only sub half of the last char
 } else {
 remaining-angle -= half-angles.at(i) * 2
 }
 }

 let inter-char-angle = remaining-angle / (chars.len() - 1)

 let cur-angle-offset = 0deg
 let angle-offsets = (cur-angle-offset,) // Comma makes a list
 for i in range(1, chars.len()) {
 cur-angle-offset += half-angles.at(i - 1) + inter-char-angle + half-angles.at(i)
 angle-offsets.push(cur-angle-offset)
 }

 // percent is float from [0, 1]. Will be used for text rotation too
 return angle-offsets.map(ao => ao / degrees)
}

// Positions text on the top portion of a circle. Height increases as required
// given font and degrees.
//
// Arguments:
// top-str: string to display on the top of the circle
// bottom-str: string to display on the bottom of the circle
// width: Total width of the containing block
// top-degrees: Range of the top of the circle to place text
// bottom-degrees: Range of the top of the circle to place text
// equidistant: Separate characters evenly rather than account for char widths
// show-design-aids: Shows design aids when true
#let text-on-circle(
 top-str,
 bottom-str,
 width,
 top-degrees,
 bottom-degrees,
 circle-background: black,
 circle-fill: none,
 circle-margin: 0pt,
 equidistant: false,
 show-design-aids: false,
) = context {
 let m = measure[M] // pic a good letter
 let (letter-width, cap-height) = (m.width, m.height)

 // Calculate radius of the circle on which we will place text
 let radius = (width - 2 * cap-height - 2 * circle-margin) / 2

 let block-fill = none
 if show-design-aids {
 block-fill = red
 }
 let containing-block-height = 2 * (radius + circle-margin + cap-height)
 let containing-block-width = width
 let containing-block-width = 2 * (radius + circle-margin + cap-height)

 // The container for the text
 block(fill: block-fill, width: containing-block-width, height: containing-block-height, {
 if circle-fill != none {
 place(
 top + left,
 dx: 0pt,
 circle(fill: circle-fill, stroke: none, radius: radius + circle-margin + cap-height),
)

 place(
 top + left,
 dx: 2 * circle-margin + cap-height,
 dy: 2 * circle-margin + cap-height,
 circle(fill: white, stroke: none, radius: radius - circle-margin),
)
 }

 // Convert string to array of chars (Support unicode characters)
 // ...otherwise str.at returns UTF-8 bytes
 let top-chars = top-str.matches(regex(".")).map(m => m.text)

 let percents = get-percents(top-chars.len())
 if not equidistant {
 percents = get-percents-char-width(top-chars, radius, top-degrees)
 }

 // Place Top Text
 let n = top-chars.len()
 for i in range(n) {
 let percent = percents.at(i)

 // Orient angles where 0deg is left Cartesian coordinate system
 let start-angle = 90deg - top-degrees / 2

 // Orient angles where 0deg is up for text rotation
 let text-start-angle = -top-degrees / 2

 let pos-angle = percent * top-degrees + start-angle
 let text-angle = percent * top-degrees + text-start-angle

 pos-angle = percent * top-degrees + start-angle

 let x = -radius * calc.cos(pos-angle)
 let y = -radius * calc.sin(pos-angle)

 let cur = measure(top-chars.at(i))
 place(
 top,
 dx: x + 50% - (cur.width / 2),
 dy: y + radius + circle-margin,
 rotate(text-angle, origin: bottom, top-chars.at(i)),
)

 if show-design-aids {
 let alignment-circle-radius = .023em
 place(
 top,
 dx: x + 50% - alignment-circle-radius,
 dy: circle-margin + y + radius + cap-height - alignment-circle-radius,
 circle(radius: alignment-circle-radius, stroke: none, fill: black),
)
 }
 }

 // Convert string to array of chars (Support unicode characters)
 // ...otherwise str.at returns UTF-8 bytes
 let bottom-chars = bottom-str.matches(regex(".")).map(m => m.text)

 let percents = get-percents(bottom-chars.len())
 if not equidistant {
 percents = get-percents-char-width(bottom-chars, radius, bottom-degrees)
 }

 // Place Bottom Text
 let n = bottom-chars.len()
 for i in range(n) {
 let percent = percents.at(i)

 // Orient angles where 0deg is left Cartesian coordinate system
 let start-angle = 270deg + bottom-degrees / 2

 // Orient angles where 0deg is up for text rotation
 let text-start-angle = bottom-degrees / 2

 let pos-angle = -percent * bottom-degrees + (start-angle)
 let text-angle = -percent * bottom-degrees + (text-start-angle)

 let x = -(radius + cap-height) * calc.cos(pos-angle)
 let y = -(radius + cap-height) * calc.sin(pos-angle)

 let cur = measure(bottom-chars.at(i))
 place(
 top,
 dx: x + 50% - (cur.width / 2),
 dy: y + radius + circle-margin,
 rotate(text-angle, origin: bottom, bottom-chars.at(i)),
)

 if show-design-aids {
 let alignment-circle-radius = .023em
 place(
 top,
 dx: x + 50% - alignment-circle-radius,
 dy: circle-margin + y + radius + cap-height - alignment-circle-radius,
 circle(radius: alignment-circle-radius, stroke: none, fill: black),
)
 }
 }

 if show-design-aids {
 // Center line
 place(
 top + left,
 line(start: (50%, 0pt), end: (50%, 100%), stroke: .3pt),
)

 // Calculated circle based on width and degrees for top text
 place(
 top + left,
 dx: -radius + containing-block-width / 2,
 dy: circle-margin + cap-height,
 circle(stroke: .1pt, radius: radius),
)

 // Calculated circle based on width and degrees for bottom text
 place(
 top + left,
 dx: -(radius + cap-height) + containing-block-width / 2,
 dy: circle-margin,
 circle(stroke: .1pt, radius: (radius + cap-height)),
)
 }
 })
}

// Distribute letters equally
#let get-percents(length) = {
 if length == 0 {
 return ()
 }
 if length == 1 {
 return (.5,) // If only one character, place in the middle
 }
 let indices = range(length)
 return indices.map(i => i / (length - 1))
}

// Calculate placement percents based on character widths
#let get-percents-char-width(chars, radius, degrees) = {
 if chars.len() == 0 {
 return ()
 }

 if chars.len() == 1 {
 return (.5,) // If only one character, place in the middle
 }
 let widths = chars.map(c => measure(c).width)
 // let widths = chars.map(c => 0pt)
 let half-widths = widths.map(w => w / 2)
 let half-angles = half-widths.map(hw => calc.atan2(radius.to-absolute().pt(), hw.pt()))

 let remaining-angle = degrees
 for i in range(half-angles.len()) {
 if i == 0 {
 remaining-angle -= half-angles.at(i) // only sub half of the first char
 } else if i == half-angles.len() - 1 {
 remaining-angle -= half-angles.at(i) // only sub half of the last char
 } else {
 remaining-angle -= half-angles.at(i) * 2
 }
 }

 let inter-char-angle = remaining-angle / (chars.len() - 1)

 let cur-angle-offset = 0deg
 let angle-offsets = (cur-angle-offset,) // Comma makes a list
 for i in range(1, chars.len()) {
 cur-angle-offset += half-angles.at(i - 1) + inter-char-angle + half-angles.at(i)
 angle-offsets.push(cur-angle-offset)
 }

 // percent is float from [0, 1]. Will be used for text rotation too
 return angle-offsets.map(ao => ao / degrees)
}

// Positions text on the top portion of a circle. Height increases as required
// given font and degrees.
//
// Arguments:
// top-str: string to display on the top of the circle
// bottom-str: string to display on the bottom of the circle
// width: Total width of the containing block
// top-degrees: Range of the top of the circle to place text
// bottom-degrees: Range of the top of the circle to place text
// equidistant: Separate characters evenly rather than account for char widths
// show-design-aids: Shows design aids when true
#let text-on-circle(
 top-str,
 bottom-str,
 width,
 top-degrees,
 bottom-degrees,
 circle-background: black,
 circle-fill: none,
 circle-margin: 0pt,
 equidistant: false,
 show-design-aids: false,
) = {
 let m = measure[M] // pic a good letter
 let (letter-width, cap-height) = (m.width, m.height)

 // Calculate radius of the circle on which we will place text
 let radius = (width - 2 * cap-height - 2 * circle-margin) / 2

 let block-fill = none
 if show-design-aids {
 block-fill = red
 }
 let containing-block-height = 2 * (radius + circle-margin + cap-height)
 let containing-block-width = width
 let containing-block-width = 2 * (radius + circle-margin + cap-height)

 // The container for the text
 block(fill: block-fill, width: containing-block-width, height: containing-block-height, {
 if circle-fill != none {
 place(
 top + left,
 dx: 0pt,
 circle(fill: circle-fill, stroke: none, radius: radius + circle-margin + cap-height),
)

 place(
 top + left,
 dx: 2 * circle-margin + cap-height,
 dy: 2 * circle-margin + cap-height,
 circle(fill: white, stroke: none, radius: radius - circle-margin),
)
 }

 // Convert string to array of chars (Support unicode characters)
 // ...otherwise str.at returns UTF-8 bytes
 let top-chars = top-str.matches(regex(".")).map(m => m.text)

 let percents = get-percents(top-chars.len())
 if not equidistant {
 percents = get-percents-char-width(top-chars, radius, top-degrees)
 }

 // Place Top Text
 let n = top-chars.len()
 for i in range(n) {
 let percent = percents.at(i)

 // Orient angles where 0deg is left Cartesian coordinate system
 let start-angle = 90deg - top-degrees / 2

 // Orient angles where 0deg is up for text rotation
 let text-start-angle = -top-degrees / 2

 let pos-angle = percent * top-degrees + start-angle
 let text-angle = percent * top-degrees + text-start-angle

 pos-angle = percent * top-degrees + start-angle

 let x = -radius * calc.cos(pos-angle)
 let y = -radius * calc.sin(pos-angle)

 let cur = measure(top-chars.at(i))
 place(
 top,
 dx: x + 50% - (cur.width / 2),
 dy: y + radius + circle-margin,
 rotate(text-angle, origin: bottom, top-chars.at(i)),
)

 if show-design-aids {
 let alignment-circle-radius = .023em
 place(
 top,
 dx: x + 50% - alignment-circle-radius,
 dy: circle-margin + y + radius + cap-height - alignment-circle-radius,
 circle(radius: alignment-circle-radius, stroke: none, fill: black),
)
 }
 }

 // Convert string to array of chars (Support unicode characters)
 // ...otherwise str.at returns UTF-8 bytes
 let bottom-chars = bottom-str.matches(regex(".")).map(m => m.text)

 let percents = get-percents(bottom-chars.len())
 if not equidistant {
 percents = get-percents-char-width(bottom-chars, radius, bottom-degrees)
 }

 // Place Bottom Text
 let n = bottom-chars.len()
 for i in range(n) {
 let percent = percents.at(i)

 // Orient angles where 0deg is left Cartesian coordinate system
 let start-angle = 270deg + bottom-degrees / 2

 // Orient angles where 0deg is up for text rotation
 let text-start-angle = bottom-degrees / 2

 let pos-angle = -percent * bottom-degrees + (start-angle)
 let text-angle = -percent * bottom-degrees + (text-start-angle)

 let x = -(radius + cap-height) * calc.cos(pos-angle)
 let y = -(radius + cap-height) * calc.sin(pos-angle)

 let cur = measure(bottom-chars.at(i))
 place(
 top,
 dx: x + 50% - (cur.width / 2),
 dy: y + radius + circle-margin,
 rotate(text-angle, origin: bottom, bottom-chars.at(i)),
)

 if show-design-aids {
 let alignment-circle-radius = .023em
 place(
 top,
 dx: x + 50% - alignment-circle-radius,
 dy: circle-margin + y + radius + cap-height - alignment-circle-radius,
 circle(radius: alignment-circle-radius, stroke: none, fill: black),
)
 }
 }

 if show-design-aids {
 // Center line
 place(
 top + left,
 line(start: (50%, 0pt), end: (50%, 100%), stroke: .3pt),
)

 // Calculated circle based on width and degrees for top text
 place(
 top + left,
 dx: -radius + containing-block-width / 2,
 dy: circle-margin + cap-height,
 circle(stroke: .1pt, radius: radius),
)

 // Calculated circle based on width and degrees for bottom text
 place(
 top + left,
 dx: -(radius + cap-height) + containing-block-width / 2,
 dy: circle-margin,
 circle(stroke: .1pt, radius: (radius + cap-height)),
)
 }
 })
}

(

 hyperfine # --max-runs 2

 'typst compile grid-no_curvly-outer_context.typ - --format=pdf'

 'typst compile grid-no_curvly.typ - --format=pdf'

 'typst compile no_curvly-outer_context.typ - --format=pdf'

 'typst compile no_curvly.typ - --format=pdf'

 'typst compile grid-no_context_curvly-outer_context.typ - --format=pdf'

 'typst compile grid-no_context_curvly.typ - --format=pdf'

 'typst compile outer_context.typ - --format=pdf'

 'typst compile grid-trim_curvly.typ - --format=pdf'

 'typst compile original.typ - --format=pdf'

 'typst compile grid-vendor_curvly.typ - --format=pdf'

 'typst compile grid.typ - --format=pdf'

)

Benchmark 1: typst compile grid-no_curvly-outer_context.typ - --format=pdf

 Time (mean ± σ): 987.4 ms ± 90.8 ms [User: 2440.0 ms, System: 517.5 ms]

 Range (min … max): 837.0 ms … 1085.8 ms 10 runs

Benchmark 2: typst compile grid-no_curvly.typ - --format=pdf

 Time (mean ± σ): 1.227 s ± 0.156 s [User: 3.515 s, System: 0.688 s]

 Range (min … max): 0.972 s … 1.364 s 10 runs

Benchmark 3: typst compile no_curvly-outer_context.typ - --format=pdf

 Time (mean ± σ): 1.489 s ± 0.202 s [User: 3.263 s, System: 0.847 s]

 Range (min … max): 1.237 s … 1.964 s 10 runs

Benchmark 4: typst compile no_curvly.typ - --format=pdf

 Time (mean ± σ): 2.325 s ± 0.412 s [User: 6.784 s, System: 1.319 s]

 Range (min … max): 1.839 s … 3.065 s 10 runs

Benchmark 5: typst compile grid-no_context_curvly-outer_context.typ - --format=pdf

 Time (mean ± σ): 4.362 s ± 0.582 s [User: 13.570 s, System: 2.514 s]

 Range (min … max): 3.799 s … 5.423 s 10 runs

Benchmark 11: typst compile grid.typ - --format=pdf

 Time (mean ± σ): 6.578 s ± 0.217 s [User: 31.384 s, System: 3.892 s]

 Range (min … max): 6.300 s … 6.967 s 10 runs

Benchmark 10: typst compile grid-vendor_curvly.typ - --format=pdf

 Time (mean ± σ): 6.912 s ± 1.064 s [User: 32.338 s, System: 3.930 s]

 Range (min … max): 6.211 s … 9.668 s 10 runs

Benchmark 9: typst compile original.typ - --format=pdf

 Time (mean ± σ): 6.917 s ± 0.366 s [User: 33.385 s, System: 4.260 s]

 Range (min … max): 6.473 s … 7.770 s 10 runs

 Warning: Statistical outliers were detected. Consider re-running this benchmark on a quiet system without any interferences from other programs. It might help to use the '--warmup' or '--prepare' options.

Benchmark 7: typst compile outer_context.typ - --format=pdf

 Time (mean ± σ): 7.413 s ± 0.588 s [User: 34.860 s, System: 4.574 s]

 Range (min … max): 6.764 s … 8.317 s 10 runs

Benchmark 8: typst compile grid-trim_curvly.typ - --format=pdf

 Time (mean ± σ): 7.835 s ± 1.637 s [User: 36.315 s, System: 4.564 s]

 Range (min … max): 6.236 s … 10.288 s 10 runs

Benchmark 6: typst compile grid-no_context_curvly.typ - --format=pdf

 Time (mean ± σ): 7.945 s ± 1.652 s [User: 36.606 s, System: 4.936 s]

 Range (min … max): 6.623 s … 11.025 s 10 runs

 Warning: The first benchmarking run for this command was significantly slower than the rest (11.025 s). This could be caused by (filesystem) caches that were not filled until after the first run. You should consider using the '--warmup' option to fill those caches before the actual benchmark. Alternatively, use the '--prepare' option to clear the caches before each timing run.

Summary

 typst compile grid-no_curvly-outer_context.typ - --format=pdf ran

 1.24 ± 0.20 times faster than typst compile grid-no_curvly.typ - --format=pdf

 1.51 ± 0.25 times faster than typst compile no_curvly-outer_context.typ - --format=pdf

 2.35 ± 0.47 times faster than typst compile no_curvly.typ - --format=pdf

 4.42 ± 0.72 times faster than typst compile grid-no_context_curvly-outer_context.typ - --format=pdf

 6.66 ± 0.65 times faster than typst compile grid.typ - --format=pdf

 7.00 ± 1.26 times faster than typst compile grid-vendor_curvly.typ - --format=pdf

 7.01 ± 0.74 times faster than typst compile original.typ - --format=pdf

 7.51 ± 0.91 times faster than typst compile outer_context.typ - --format=pdf

 7.94 ± 1.81 times faster than typst compile grid-trim_curvly.typ - --format=pdf

 8.05 ± 1.83 times faster than typst compile grid-no_context_curvly.typ - --format=pdf

#set page(height: auto, width: auto, margin: 1em)

#import "@preview/diagraph:0.3.6": render

#let data = (

 (

 grid-no_curvly-outer_context: 0.9874,

 grid-no_curvly: 1.227,

 no_curvly-outer_context: 1.489,

 no_curvly: 2.325,

 grid-no_context_curvly-outer_context: 4.362,

 grid: 6.578,

 grid-vendor_curvly: 6.912,

 original: 6.917,

 outer_context: 7.413,

 grid-trim_curvly: 7.835,

 grid-no_context_curvly: 7.945,

)

 .pairs()

 .map(((name, time)) => (name, (id: name.replace("-", "_"), time: time)))

 .to-dict()

)

#let arrow-one(a, b) = {

 let (src, dst) = if a.time <= b.time { (a, b) } else { (b, a) }

 let ratio = calc.sqrt(dst.time / src.time - 1)

 src.id + " -> " + dst.id

 " [penwidth={} arrowsize={}]".replace("{}", repr(ratio))

 "\n"

}

#let arrow(..args) = {

 assert.eq(args.named(), (:))

 let keys = args.pos()

 assert(keys.len() >= 2)

 for i in range(0, keys.len() - 1) {

 arrow-one(keys.at(i), keys.at(i + 1))

 }

}

- $a -> b$ means a is faster than b.

- The thicker the arrow, the greater the difference.

#show "no_curvly": set text(green.darken(20%))

#show "grid": set text(blue)

#show "outer_context": set text(orange)

#show "original": set text(2em, weight: "bold")

#render({

  ```dot

  digraph {

    node [color=gray]

    edge [color=purple]

  ```.text


 // Draw nodes

 data

 .pairs()

 .map(((name, info)) => {

 info.id

 " [label=\""

 name.replace("-", " + ")

 "\"]"

 })

 .join("\n")

 // Draw arrows

 arrow(

 data.original,

 data.grid,

 data.grid-vendor_curvly,

 data.grid-trim_curvly,

 data.grid-no_context_curvly,

 data.grid-no_curvly,

)

 arrow(

 data.grid,

 data.grid-no_curvly,

)

 arrow(

 data.original,

 data.no_curvly,

 data.no_curvly-outer_context,

 data.grid-no_curvly-outer_context,

 data.grid-no_curvly,

)

 arrow(

 data.no_curvly,

 data.grid-no_curvly,

)

 arrow(

 data.grid-no_context_curvly,

 data.grid-no_context_curvly-outer_context,

)

 arrow(

 data.original,

 data.outer_context,

 data.no_curvly-outer_context,

)

 arrow(

 data.outer_context,

 data.grid-no_context_curvly-outer_context,

)

 arrow(

 data.grid,

 data.grid-no_context_curvly-outer_context,

 data.grid-no_curvly-outer_context,

)

  ```dot

  }

  ```.text

})

#for name in data.keys() {

 pdf.attach(name + ".typ", relationship: "supplement")

}

#pdf.attach("curvly-0.1.0.typ", relationship: "supplement")

#pdf.attach("curvly-trim.typ", relationship: "supplement")

#pdf.attach("curvly-no_context.typ", relationship: "supplement")

#pdf.attach("run.nu", relationship: "data")

#pdf.attach("run.log", relationship: "data")

#pdf.attach("draw.typ", relationship: "source")

